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One-Year Mortality Prognosis in Heart Failure: A Neural Network 
Approach Based on Echocardiographic Data 
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Objectives. This study sought to assess the usefulness and 
accuracy of artificial neural networks in the prognosis of l-year 
mortality in patients with heart failure. 

Background. Artificial neural networks is a computational 
technique used to represent and process information by means of 
networks of interconnected processing elements, similar to neu- 
rons. They have found applications in medical decision support 
systems, particularly in prognosis. 

Methods. Clinical and Doppler-derived echocardiographic data 
from 95 consecutive patients with diffuse impairment of myocar- 
dial contractility were studied. After 1 year, data regarding 
survival or death were obtained and produced the prognostic 
variable. The data base was divided randomly into a training data 
set (47 cases, 8 deaths) and a testing data set (48 cases, 7 deaths). 
Results of artificial neural network classification were compared 
with those from linear discriminant analysis, clinical judgment 
and conventional heuristically based programs. 

Results. The study group included 57 male (47 survivors) and 
38 female patients (33 survivors). Linear discriminant analysis 
was not efficient for separating survivors from nonsurvivors 
because the accuracy at the ideal cutoff value was only 67.4%, with 
a sensitivity of 67.5%, positive predictive value of 27.8% and 
negative predictive value of 91.5%. In contrast, all artificial neural 
networks were able to predict outcome with an accuracy of 90%, 
specificity of 93% and sensitivity of 71.4%, for the best artificial 
neural network. Both clinical judgment and automatic heuristic 
methods were also inferior in performance. 

Conclusions. The artificial neural network method has proved 
to be reliable for implementing quantitative prognosis of mortality 
in patients with heart failure. Additional studies with larger 
numbers of patients are required to better assess the usefulness of 
artificial neural networks. 

(J Am CoU Cardiol 1995;26:1586-93) 

Prognosis, or prediction of the ff~ture evolution of disease, is an 
important step in the evaluation of patients with chronic heart 
disease. Prognosis can be expressed in many forms, such as 
quality of life and symptom-free period, but the most common 
type of prognostic evaluation in patients with severe heart 
disease is survival within a given period, or outcome. 

Because outcome is usually influenced by a conglomeration 
of abnormalities, found in one or more measurable variables, 
multivariable pattern classification and recognition techniques 
represent a useful approach to quantitative prognosis. Linear 
discriminant analysis, multilinear regression analysis and logis- 
tic regression analysis of known patient data have all been used 
extensively for such types of causal-structure evaluation in 
medical prognosis. These methods are based on linear multi- 
dimensional models, that is, patterns that are geometrically 
represented as points in a multidimensional cartesian space, 
where the axes of the space are measurements or predictor 
variables (also called features). Classes of patients (e.g., survi- 
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vors and nonsurvivors) are said to be linearly separable 
whenever the statistical method is able to find a hyperplane (a 
plane in several dimensions) that can separate their represen- 
tative points into two regions of the feature space. Computa- 
tions for linear statistical analysis are usually straightforward 
and based on numeric matrix algebra procedures (1). 

However, many problems in medical pattern classification 
cannot be approached by linear methods because separability 
of patient classes in the feature space can be achieved only by 
more complex, nonlinear decision surfaces. When this occurs, 
conventional numeric algorithms for nonlinear pattern classi- 
fication can be developed, but they are usually computationally 
awkward and inelficient. In this respect, several investigations 
have demonstrated that a recently developed technology of 
artificial intelligence, artificial neural networks, offers notice- 
able advantages for implementing a system of diagnosis and 
risk stratification in outcomes research. 

Artificial neural networks, or connectionist systems, are 
being used increasingly to represent and process information 
by means of networks of interconnected processing elements, 
similar to neurons. Several emerging global properties of 
connectionist systems, such as associative memory and distrib- 
uted parallel processing, have favored its application in a wide 
variety of tasks involving pattern classification and recognition. 
Connectionist systems constitute a new and interesting para- 
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digm for the use of artificial intelligence in medicine and have 
found applications in processing and interpretation of biologic 
signals and images and decision support systems (2-4). 

Artificial neural networks can be used, among other tech- 
niques, to find approximate maps between input and output 
patterns of a quantitative nature. This end is achieved by 
exemplar-based learning, that is, by presenting to the network 
data about patients with known outcomes of the disease 
process (e.g., death or survival after a given period of obser- 
vation). Using the proper learning algorithm, the network may 
be able to predict outcome after reaching a minimal classifi- 
cation error, whenever input (predictor) variables are related 
in an orderly manner to outcome. One characteristic property 
of a certain kind of multilayer artificial network is that 
nonintuitive, complex nonlinear separation between patient 
classes can be achieved. Neural networks often have the ability 
to find hidden features in input space, where none are visible 
by conventional statistical methods or by human decision 
alone. In medical applications connectionist models have been 
used for predicting outcome in patients with coronary heart 
disease (5), patients in intensive care (6,7), wound infections 
(8), the onset of diabetes (9), breast cancer (10) and colon 
cancer recurrence (11), among others. In some recent appli- 
cations of medical decision making, such as diagnosis of acute 
myocardial infarction, the performance of artificial neural 
networks has been impressive compared with conventional 
quantitative methods and human judgment (12). 

The present study sought to evaluate the usefulness and 
accuracy of a particular artificial neural network in a task of 
medical prognosis, using a complex mixture of predictor 
variables, based on echocardiographic data, namely the pre- 
diction of 1-year mortality in patients with heart failure. 

Methods 
Clinical and echocardiographic data from 95 consecutive 

patients with dilated myocardial disease and heart failure were 
studied. Inclusion criteria were 1) clinical diagnosis of heart 
failure, and 2) echocardiographic demonstration of dilated left 
ventricle and diffuse impairment of myocardial contractility. 
Patients with arrhythmias and heart failure resulting from 
primary valvular disease were excluded. 

The time of examination in relation to the onset of extant 
disease was not controlled. At the echocardiographic exami- 
nation and during the follow-up period, treatment was deter- 
mined solely by each patient's cardiologist, in accordance with 
their own criteria. Drug therapy was not homogeneous and 
included digitalis (91% of patients), diuretic drugs (73%), 
vasodilator agents (35%) and antiarrhythmic agents (12%). 

Echoeardiographic examination. M-mode, two-dimensional 
and Doppler examinations were performed using a commercially 
available Aloka SSD-870 ultrasound system with a 2.5- or 3.5- 
MHz transducer. The variables analyzed are shown in Table 1, 
and echocardiographic measurements were made according to 
the American Society of Echocardiography and Penn convention 
recommendations. 

Table I. Clinical and Echocardiographic Variables 

Aortic diameter (mm) 
Left atrial diameter (ram) 
Left atrial diameter/body surface area (mm/m 2) 
Left ventricular systolic diameter (mm) 
Left ventricular systolic diameter/body surface area (mm/m 2) 
Left ventricular diastolic diameter (mm) 
Left ventricular diastolic diameter/body surface area (mm/m 2) 
Left ventricular posterior wall thickness (mm) 
lnterventricular septal diastolic thickness (mm) 
Left ventricular diastolic diameter/myocardial thickness ratio 
Mitral valve E point minus septal separation (ram) 
Mitral valve flow deceleration time (ms) 
Left ventricular mass (g) 
Left ventricular fractional shortening (%) 
Left ventricular ejection fraction (%) 
Heart rate (beats/min) 
Cardiac index (ml/m 2) 
Left ventricular filling pattern 

Left ventricular mass (LVM) and volumes (Teichholz) were 
calculated using the following formula: 

LVM = [(LVDD + LVPWTh + IVSTh) 3 

- (LVDD) 3] x 1.05 - 14; 

7.0 x (LVDD) 3 7.0 x (LVSD) 3 

2.4 + LVDD 2.4 + LVSD 
Volume = 7.0 x (LVDD) 3 

2.4 + LVDD 

where LVDD = left ventricular diastolic diameter; LVPWTh 
= left ventricular posterior wall thickness; IVSTh = interven- 
tricular septal wall thickness; and LVSD = left ventricular 
systolic diameter. 

Left ventricular filling pattern (flow) was coded as follows: 
0 = normal or "normalized"; 1 = rapid filling predominant 
pattern; 2 = atrial filling predominant pattern. 

Clinical data. The following data were obtained by patient 
interview at the time of the initial examination: age (in years); 
gender (coded as 1 = male, 2 = female); New York Heart 
Association functional class (coded as 1 = class I; 2 = class II; 
3 = class III; 4 = class IV). 

Basic presumed underlying etiology was classified according to 
the following Wpes: 1 = Chagas' disease; 2 = hypertensive 
cardiomyopathy; 3 = coronary artery disease; 4 = idiopathic 
cardiomyopathy; 5 = myocarditis; 6 -- alcoholism; 7 = diabetes. 

During the follow-up period, information regarding survival 
or circumstances of death were obtained by letter or telephone 
interview. This information produced the prognostic variable. 

Outcome after a 12-month observation period was coded as 
follows: 0 = survivor; 1 = nonsurvivor. 

Data preparation. The full data matrix was analyzed sta- 
tistically using the EPI-INFO 5.0 system (developed by the 
Centers for Disease Control and Prevention) for the following: 
1) frequency, mean value and standard deviation for each 
variable: 2) chi-square measures of association between care- 
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Figure l. Example of learning curve for an artificial neural network 
trained to make prognosis for l-year mortality in congestive heart 
disease. Each training epoch represents the mean squared error of 
classification achieved by the artificial neural network after running 
through all input case examples. 

goric variables, such as gender, etiology, flow pattern, func- 
tional class and 12-month mortality; 3) analysis of variance or 
the Student t test of significance of differences between survi- 
vor and nonsurvivor groups for all scalar variables; 4) linear 
correlation and regression between selected scalar variables: 
5) scattergrams between selected scalar variables and column 
diagrams between all scalar variables and patient group (sur- 
vivors or nonsurvivors). 

In addition, a linear discriminant analysis was performed 
with the full data set of scalar variables to evaluate its 
separability power on the original patient data, as well as to 
further point out the linear predictive power of individual 
variables. The results of this analysis were used to derive an 
overall picture of data association and causal structure, and to 
guide the selection of input variables to the neural network. 

Neural network approach. Finally, the full relation data 
base was divided randomly into a training data base (47 cases, 
8 deaths) and a testing data base (48 cases, 7 deaths) and each 
one converted to the ASCII sequential files required by the 
neural network and linear discriminant analysis programs. For 
the linear discriminant analysis, only scalar variables were 
used, and, where appropriate, body surface area-corrected 
indexes only. For use by the neural network, all input variables 
were automatically standardized into the interval [0, 1]. The 
maximal and the minimal values used for standardizing each 
variable were obtained from the univariate data analysis of the 
full data set. Categoric variables, when binary (e.g., gender), 
were allocated to a single node using 0 and 1. When the 
variable was ordinal (e.g., functional class), it was allocated a 
sequential integer and then standardized to the range [0, 1]. 
When the variable was multinominal (e.g., etiology), it was 
allocated to a suite of binary nodes, each one holding a [0/1] 
value for each possible alternative (e.g., ET1, ET2, ET3). 

After extensive experimentation with several network con- 
figurations, reported elsewhere (13), we centered our investi- 
gation on the prognostic ability of artificial neural networks in 
dilated heart disease with the following configurations (Fig. 1): 
l ) Three-layer feed-forward network with the plain backpropa- 
gation learning rule. 2) Input variables: Two sets of variables 
were investigated (Table 2): a) complete = almost all recorded 
variables, with 29 nodes for 18 variables; b) reduced = only the 
11 most significant variables, indicated by the univariate and 
linear discriminant statistical analysis, giving 13 input nodes 
(number of hidden nodes = 2, 5 or 10). 3) One output node 
(survival/death). 4) Learning method: backpropagation of er- 

Table 2. Prognosis of Dilated Myocardial Disease: Input Variables 

Inpul \/ariablc Variable Type 

Analysis Set 

Complete Reduced 
LDA Set ANN Set ANN 

Age (yr) 

Aortic diameter (ram) 
Cardiac index (ml/m e) 

Etiology (1-7)' 
Mitral valve tlow pancrn ( 0 - 2 )  

Heart rate Ibcats/min) 
IVS (mm) 

Left atrial index {him/m:) 

Left vcntricular diameter/thickness ratio 
Left ventricular diastolic diameter index (mm/m') 
Left ventricular ejection fraction (¢:;,) 

Left ventricular mass (g) 

Left ventricular systolic diameter index (mm/mel 

Mitral E point IVS scparatiun Imm) 

Mitral valve insullicicncy (1!-41" 

Mitral flo,s decclcratinn time (ms) 

Initial NYtlA index functional class ( I 4) ~ 
Left ventricular posterior wall thickness (mm) 

Gender ( l-2y: 

S x x x 

S x 

S x x 

C x 

( x x 

S × × 
S x x x 

S x × x 

S x x x 

S x x x 

S x x x 

S x x 

S x x x 

S x x x 

C x 
S x x x 

O x 

S x × x 

C x 

*Sec Table 4 for explanation ot ct~dcs. ANN = artificial neural network: C = categoric; IVS = interventricular septal; 
LDA :: lincaT discriminant analysis: NYtlA New York Heart Association: O = ordinal; S = scalar. 
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Table 3. Prognosis of Dilated Myocardial Disease: Univariate Analysis of Association for Scalar Variables 

Survival Death Statistics 

Scalar Variable Mean SD Mean 8D Diff F* p Valuer 

Age (yr) 50.10 14.73 56.87 17.36 
Aortic diameter (mm) 32.20 4.57 32.60 3.91 
Interventricular septal thickness (mm) 9.27 1.33 8.87 I. 19 
Left ventricular posterior wall thickness (mm ) 8.91 1.29 8.40 I. 18 
Left ventricular diameter/thickness ratio 3.71 0.69 4.20 0.54 
Left ventricular fractional shortening (%) 19.07 4.69 14.48 3.31 
Mitral E point IVS separation (mm) 23.37 6.36 26.73 5.23 

Mitral flow deceleration time (ms) 183.16 57.92 157.40 51.61 
Heart rate (beats/min) 78.56 14.16 86.93 19.47 
Left ventricular diastolic diameter index (mm/m:) 38.31 5.84 42.52 6.13 
Left ventricular systolic diameter index (mm/m a) 31.08 5.51 36.59 5.83 
Left atrial index (mm/m z) 24.27 4.20 28.83 4.04 
Left ventricular mass (g) 326.67 ~8.86 364.41) 141.61 
Left ventricular ejection fraction (9~ ~ 38.1(1 8.69 29.74 6.16 
Cardiac index (ml/m 2) 49.29 14.52 48.91 18.71 

6.77 2.44 0.1173 
0.40 0.10 0.7499 
0.40 1.23 0.2702 
(t.51 2.06 0.1511 
0.49 6.49 0.0120 
4.59 11.81 0.0012 

3.36 3.70 0.0542 
25.76 2.58 0.1077 

8.37 3.89 0.4850 
4.21 6.47 0.0121 

5.53 12.42 0.0010 
4.56 15.04 0.0004 

37.73 1.85 0.1739 
8.36 12.62 0.0009 
I).38 0.01 0.9270 

*Ratio statistics. +Two-tailed probability. Diff : difference between mean values: IVS - interventricular septal. 

rors. 5) Transfer function: sigmoid. Internal bias of 0.0, learn- 
ing rate of 1.0 to 1.5 and momentum of 0.0; 6) Weight 
initialization: randomized in the range [-0.5, +0.5]. Method of 
presentation of examples during training: randomized. Method 
of weight updating: continuous. 

Evaluation of artificial neural network performance was 
carried out using the original data set for each network, as well 
as its complementary test data set, containing patient data not 
used for training the network. For each patient in these data 
sets, the program compared actual with predicted outcome, 
generating a file of comparative results. Finally, this file was 
analyzed and test variables were computed, on the basis of a 
2 × 2 contingency table constructed from expected or obtained 
statistics (accuracy, sensitivity, specificity and predictivity). 

Because the output of the artificial neural network and 
linear discriminant analysis were graded, that is, a number in 
the inclusive continuous range [0, 1] was produced for each test 
record, it was necessary to define a cutoff point to count the 
number of true and false predictions to build the 2 × 2 
contingency table. Because this definition is essentially arbi- 
trary, the best procedure is to study the effect of different cutoff 
points on the performance statistics. For each cutoff point, 
sensitivity and specificity were calculated and plotted one 
against the other in a two-dimensional line graph, producing a 
receiver operating characteristic curve (14). 

Clinical judgment. An additional proposition was to com- 
pare the results of the artificial neural network classification 
with those resulting from clinical judgment and conventional 
heuristic-based programs. We achieved this by estimating the 
classification accuracy of heuristic rules derived previously by a 
group of experienced physicians for the present data set (15), 
as well as by a commercially available program for automatic 
induction, KnowledgeSEEKER (First Mark Technology). 

R e s u l t s  

The study group included 95 patients (57 male [47 survi- 
vors], 38 female [33 survivors]; range 13 to 86 years old, mean 
[+SD] 51.25 _+ 15.27). Presumed etiologies were distributed in 
descending order of prevalence as follows: idiopathic cardio- 
myopathy (46.3%), hypertensive cardiomyopathy (23.2%), 
Chagas' disease (13.7%), coronary artery disease (12.6%) and 
other cardiomyopathies, including those due to diabetes and 
alcoholism (4.2%). 

For nonsurvivors, time of survival ranged from 23 to 367 
days (mean 166.07 ~ 123.7). 

Statistical analysis. The results of the univariate statistical 
analysis of study variables are shown in Tables 3 and 4). Scalar 
variables significantly associated with 12-month mortality were 
left ventricular diastolic diameter/thickness ratio, mitral E 
point to interventricular septal separation, left ventricular 
diastolic diameter index, left ventricular systolic diameter 
index, left atrial diastolic index, all directly proportional to 
death risk; left ventricular fraction shortening, mitral valve 
flow deceleration time and left ventricular ejection fraction, all 
inversely proportional to death risk. The variables not associ- 
ated with death risk were age, diameter of aorta, interventric- 
ular septal thickness, left ventricular posterior wall thickness, 
heart rate, left ventricular mass and cardiac index. Further- 
more, all categoric variables, such as gender, disease etiology, 
type of mitral flow and functional class were not significantly 
associated with mortality risk. Several of the significant vari- 
ables were statistically correlated to a larger or lesser degree, 
but only left ventricular fractional shortening was removed 
from the variable set because it had a linear correlation of 1.0 
with left ventricular ejection fraction. 

The linear discriminant analysis results are shown in Table 
5. As judged from the final discriminant weights, the most 
important variable was left ventricular systolic diameter index. 
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Table 4. Prognosis of Dilated Myocardial Disease: Univariate 
Analysis of Association for Categoric Variables 

Categoric Mortality 
Variable and Survival Rate Chi- p 

Code/Definition (%) (~)  Square Value 

Gender 
1/male 58.75 t~¢~.(,7 (I.33 0.5657 
2/female 4125 33.33 

Etiology 
l/Chagas' disease 11.25 2!~.67 5.57 11.3499 
2/hypertension 25.0ti 13.33 

3/coronary disease 13.75 6.67 

4/idiopathic 46.25 46.~7 
5/myocarditis 1.25 6.1~7 

6/alcoholism I.(X) 11.110 

7/diabetes 1.01t 1.110 
Mitral flow 

O/normal 46.25 2¢).(~7 2.93 0.2310 

l/restrictive 31.25 53.33 
2/atrial dominant 22.5(i 2{I.0(I 

Initial NYHA class 

l 311.0ll 13.33 3.92 0.2698 
11 35.111} 26.67 

III 20.00 40.00 

IV 15.(X) 20 J l0 

NYHA = New York Heart Association. 

Other important variables were left ventricular posterior wall 
thickness, left ventricular diastolic diameter/thickness ratio, 
left ventricular diastolic diameter index and left ventricular 
ejection fraction. 

The linear discriminant analysis was not efficient enough to 
distinguish survivors from nonsurvivors on the basis of input 
scalar variables. The distributions of the discriminant function 
for both patient groups overlapped considerably (Fig, 2), and 

Table 5. Prognosis of Dilated Myocardial Disease: Results of Linear 
Discriminant Analysis* 

Discriminant 
Variable Coefficient 

Age (yr) 
IVS thickness (ram) 

Left ventricular posterior wall thickness (mml 

Left ventricular diameter/thickness ratio 
Mitral E point IVS separation (ram) 

Mitral flow deceleration time (ms) 
Heart rate (beats/min) 
Left ventricular diastolic diameter index (mm/m-') 

Left ventricular systolic diameter index (mm/m 2} 
Left atrial index (mm/m 2) 

Left ventricular mass (g) 

Left ventricular ejection fraction ("i) 
Cardiac index (ml/m 2) 

0.0595 
-0.7998 

-2.1362 

1.3513 
0.0719 

0.11098 

0.11910 

-- 1.2668 

17.5586 

0.5296 

U.0762 
2.4943 

-0.0320 

*Mean value for discriminant function (death): 495.85. Mean value for 
discriminant function (survival): 380.72. Difference between mean values 
(Mahalanobis distance): 115.13. Cutoff point of discriminant functions: 438.28: 
z = -5.36. F ratio 142.411: degrees of freedom 13/93. IVS = interventricular 
septal. 
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Figure 2. Distribution of linear discriminant function calculated for 
two groups of patients, according to the 1-year mortality prognosis: 
patients with congestive heart disease who died (squares) and patients 
who survived (triangLes). Yertieal line indicates the cut point for best 
separation of the two statistical classes. 

accuracy at the ideal cutoff value was only 67.4%, with a 
sensitivity of 67.5 %. The weakest feature of the linear discrimi- 
nant analysis solution was positive predictivity, which was only 
27.8% (i.e., linear discriminant analysis predicted far more 
deaths than actually occurred in the patient sample), whereas 
negative predictivity (91.5%) was excellent. These results show 
that a statistical linear model is not able to perform class 
separation in multidimensional space and that a nonlinear 
approach is justified. 

Neural network analysis. The artificial neural network 
results are summarized in Table 6. In the discussion that 
follows, artificial neural network configurations are denoted by 
three numbers, meaning the number of nodes in the input, 
hidden and output layers, respectively (e.g., 13-5-1). 

All networks were trained to convergence within 3,000 
training cycles, and many of them were able to converge to an 
acceptable mean error just below 1,000 cycles. Global mean 
squared error was <0.01 in all cases, reaching up to 0.004 for 
the best cases. The distribution of network output gave evi- 
dence that the solutions converged to the near proximity of 0 
and 1 in all cases (Fig. 3). Only -9% of all outputs were in the 
range 0.1 to 0.8. 

All networks were able to predict outcome (Table 6, Fig. 3), 
with accuracy ranging from 93.33% (13-10-1) to 100% (several 
nets) for the training data set and from 72% (29-2-1) to 90% 
(13-5-1) for the test data set. In general, the networks with the 
reduced set of variables (11 variables) fared better than those 
with the the full set of variables (18 variables); and within each 
of these two groups of artificial neural networks, those with the 
intermediate number of hidden nodes had the best perfor- 
mance. However, differences were not large, except for the 
best network (13-5-1), with 11 variables and 5 hidden nodes, 
which yielded 90% accuracy, 71.4% sensitivity and 93% spec- 
ificity. The worst variable for all networks was always sensitiv- 
ity, denoting a relative inability to predict correctly the number 
of nonsurvivors. 

Clinical judgment analysis. When applied to the full data 
set, the deterministic rule produced by the clinicians yielded an 
accuracy of 82%, a sensitivity of 46.7% and a specificity of 
88%. The rule produced by the clinicians was as follows: 



JACC Vol. 26, No. 7 ORTIZ ET AL. 1591 
December 1995:1586 93 PROGNOSIS IN HEART FAILURE 

Table 6. Prognosis of Dilated Myocardial Disease: Comparative Results of Classification Performance 

Positive Negative 
Method Data Set Accuracy Sensitivity, Specificity Predictivity Predictivity 

Linear discriminant analysis Full set 67.37 66.67 67.50 27.78 91.53 

Heuristics rule by clinician Full set 82.00 46.~7 88.75 43.75 89.87 
Heuristics rule by program Full set 91.5(I 46.67 100 100 90.90 

Neural network 13-2-1 Training set 95.6(I 75.00 100 100 94.87 
Tesl set 88.00 42.90 95,30 60.00 91.10 

Neural network 13-5-1 Training set 1(10 101/ 100 100 100 

Test set 90.00 71.42 93.00 62.50 95.24 

Neural network 13-10-1 Training set q3.33 75.00 97.33 85.70 94.70 
Test set 88.00 28.60 97.70 50.00 89.10 

Neural network 29-2-1 Training set 97.80 87.50 100 100 97.40 
Test set 72.00 42.9(I 82.20 33.33 84.60 

Neural network 29-5- I Training set 100 l(tll 100 100 100 
Test set 80.00 42.911 86.0(I 33.33 90.20 

Neural network 29-10-1 Training set 100 101) 100 100 100 
Test set 72.4(I 42.86 76.74 23.08 89.19 

If MVDT -< 140 ms and LADI > 25 mm/m-" 

and LVDDTh -> 3.4, then Outcome - Death, 

where MVDT = mitral valve flow deceleration; LADI = left 
atrial diastolic index; and LVDDTh = left ventricular diastolic 
diameter/thickness ratio. The rule produced by the heuristic 
methods was as follows: 

If LADI -> 28.571 mm/m -~ and HR -> 75 beats/rain 

and LVEF -< 31.12l. then Outcome = Death (100%) 

where HR = heart rate; and LVEF = [eft ventricular ejection 
fraction. 

Using these rules, the actual mortality rate was 10.1% in the 
low risk group versus 43.8% in the high risk group (statistically 
significant, chi-square 11.31, 1 degree of freedom, p = 
0.00077). The decision rule formulated by physicians had 
unexpected characteristics because it ignores other variables 

Figure 3. Distribution of prediction outputs for three completely 
trained artificial neural networks. Each vertical bar represents the 
relative frequency of cases for which the neural network produced a 
graded output of the value indicated on the horizontal axis. A value 
near 0 indicates a low probabiliW of death within 1 year. A value near 
1 indicates a high probability of death. The network number indicates the 
number of input nodes (e.g., 13), the number of hidden nodes (e.g., 2) and 
the number of output nodes (e.g., 1). Data refer to the test data set. 
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with a higher univariate association with survival. The rules 
produced by conventional heuristic methods, besides being 
different from the rule produced by the clinicians, is also 
surprising because it uses a variable (heart rate) that was not 
found to be significantly associated with outcome in the 
univariate analysis. The rule achieved an accuracy of 91.5%, a 
sensitivity of 46.7% and a specificity of 100% (Table 6). Using 
these criteria, the actual mortality rate was 10% for the low risk 
group and 100% for the high risk group (statistically signifi- 
cant, chi-square 40.3, 1 degree of freedom, and p < 0.000001), 
which was better than human judgment. 

Discussion 

Comparison of neural network performance, linear dis. 
criminant analysis and heuristic rules. In analyzing the per- 
formance of neural networks, linear discriminant analysis and 
heuristic rules in outcome prognosis of dilated myocardial 
disease it is clear that all the methods systematically predicted 
more deaths than actually occurred. 

When all 95 patients in the training and test data sets are 
considered, the best artificial neural network had only five 
erroneous predictions: three falsely positive (Patients 19, 26 
and 38; the latter died within 24 months) and two falsely 
negative (Patients 44 and 48). Because the number of nonsur- 
vivors is considerably lower than that of survivors, the impact 
of three errors is large, leading to a low positive predictivity for 
all neural networks tested in the present study. A highly 
inflated false positive error was also observed for the linear 
discriminant analysis, which had a very low positive predictivity 
(27.8%). Simple heuristic rules derived by clinical expertise or 
automatic induction also encountered the same problem, that 
is, high specificities and low to medium sensitivities. 

This result could be explained by the fact that patients 
underwent uncontrolled therapeutic intervention after the 
initial examination. Assuming that therapy had been con- 
ducted effectively for most patients, it is reasonable to expect 
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that many patients who were predicted to die, did not. There- 
fore, adding therapeutic variables to the predictor variables 
could lead to an improvement in decision specificity. Another 
difficulty occurs in diseases where the proportions of outcomes 
differ too much (in the present study 10.5% of nonsurvivors vs. 
84.2% of survivors within 12 months). In this situation, it is 
harder to build a model in which the lowest risk is predicted 
with the same accuracy as the highest risk. 

Performance of artificial neural networks. The perfor- 
mance of artificial neural networks in the prognosis of outcome 
for patients with dilated myocardial disease can be rated as 
very good if the following are considered: 1) The time of 
measurement of variables was not fixed in relation to onset of 
disease; 2) a large number of input variables were associated 
with outcome; 3) input variables presented large variability 
among patients of the same outcome class; 4) the number of 
training examples was too low in relation to problem dimen- 
sionality; 5) subsequent therapeutic intervention was not con- 
trolled or accounted for; and 6) several etiologic factors were 
present. A nearly optimal combination of high sensitivity and 
specificity was achieved with the 13-5-1 network, which was the 
decision method that outperformed all others. The impressive 
accuracy of 90% achieved with the test data demonstrates that 
this neural network was able to find a decision surface with 
acceptable prognostic power by using only the clinical and 
echocardiographic variables provided to input and that the 
aforementioned factors are not really necessary. 

We can therefore support the proposition that artificial 
neural networks are valid and reliable tools for carrying out 
quantitative medical decision making in the area of prognosis 
of cardiac diseases. 

Whereas both heuristic solutions have good to excellent 
accuracies and specificities, similar to those obtained by neural 
networks, sensitivities are unacceptably low for good clinical 
decision support (46.7%). Furthermore, they were derived 
with knowledge of the full data set, so the comparison with 
artificial neural networks, which had much more stringent 
criteria of test performance, cannot be made with fairness. In 
fact, all artificial neural networks with 5 to 10 hidden neurodes 
(processing elements) tested in the present study had accura- 
cies, sensitivities and specificities of 100% when tested with the 
full data set. Even when tested with the separate test data set, 
receiver operating characteristic artificial neural network 
curves lie above the point of performance of heuristic rules 
(Fig. 4). 

In the present work, we found that the best network 
contained five hidden neurodes and a reduced set of variables. 
Unfortunately, the number of cases available for training and 
testing was not large, and some of the classification inaccura- 
cies may stem from this. Performance statistics (accuracy, 
sensitivity, specificity) become very unstable and unreliable 
when the number of cases is small in any given class; that is, 
one false negative or false positive error has a disproportion- 
ately larger impact on them. Thus, generalization seems to 
have been achieved, but larger sample sizes would provide a 
firmer ground for this statement. 
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Figure 4. Comparison of classification performance of decision meth- 
ods for the prognosis of 1-year mortality in patients with heart failure. 
Symbols depict the best sensitivity/specificity pairs for the 13-5-1 
neural network (circle), logical rules produced by a clinician (solid 
square), by an automatic induction program (triangle) and by linear 
discriminant analysis (open square). 

Limitations of clinician rules. In the present study, we 
observed that expert clinicians have a strong tendency to 
reason in terms of simple, easy to remember rules for estimat- 
ing prognosis for individual patients and that they often use 
them to justify their own prescience. Moreover, the "black 
box" nature of neural networks and the need to use a computer 
to apply their decisions to everyday prognostic problems will 
surely preclude their wider use in medicine for some time to 
come (15). In this context, artificial neural networks could be 
more useful if used to extract the dominant rules that are able 
to achieve highest classification performances. Work along 
these lines is already taking place (16), and hybrid decision 
support systems, which combine artificial neural networks and 
logical reasoning in different ways seem to have a promising 
future for medical application (8,17). 

Another important lesson extracted from this study is that 
accuracy alone is not a good indicator of performance for 
medical decision-making tools. Because of the disproportion of 
outcome rates in the patients studied, specificity and sensitivity 
tend to assume rather disparate values, usually lower than the 
overall accuracy rate. 

Artificial neural networks and medical decision making. 
The use of artificial neural networks proved useful for imple- 
menting medical decision making in the area of outcome 
prognosis because 1) a reference standard (a definitive deci- 
sion for outcome in the training and test data sets) exists, is 
clear cut and also avoids problematic procedures of appraisal 
by human experts. 2) Clinical medicine has a tradition of using 
quantitative analyses and graded estimates of outcome, thus 
making the addition of artificial neural networks easily accept- 
able. 3) The complex nonlinear mixture of predictor variables 
is always present and cannot be solved satisfactorily by con- 
ventional linear multivariate statistical analysis. Recent work 
(18) has combined artificial neural network technology with 
conventional statistical estimators, such as logistic regression 
and log-likelihood analysis, with promising results. A final 
advantage of artificial neural networks is that the prognostic 
model derived by them is closely dependent on the casuistics 
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gathered in a particular institution or geographic area. in 
consequence, artificial neural networks will perform better 
than "global" indexes (such as the well known APACHE index 
for outcome prognosis of critically ill patients) (19). 

Clinical considerations. This study shows that echocardi- 
ography can be considered an excellent tool for diagnosis and 
evaluation of the prognosis of dilated myocardial disease (14) 
despite the recommendation by some investigators that other 
invasive and noninvasive diagnostic studies should be carried 
out to better evaluate pertinent variables in the disease's 
natural history (20). It is clear that many other potentially 
important variables for prognosis in dilated heart disease were 
not collected in the present work, such as angiographic and 
hemodynamic variables (21,22), myocardial thallium perfusion 
study results (23), myocardial biopsy results (24,25), electro- 
cardiographic signals (26) and cardiovascular stress test results 
(27). Perhaps, adding them to the study would improve prog- 
nosis (and artificial neural network technology would make 
this easy to do), but this is uncertain, as evidenced by the 
results of using artificial neural networks with all input vari- 
ables. 

Finally, we are convinced that many uncontrolled variables, 
such as therapeutic intervention and individual organic predis- 
position, will make it impossible to achieve higher prognostic 
performance than that reported here. However, further studies 
with larger numbers of patients are required to better under- 
stand the mechanisms involved in systolic and diastolic func- 
tion changes affecting the prognosis of patients with dilated 
myocardial disease. 
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